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Figure 2. The equatorial plane of the H2Os3(CO)n molecule, showing 
angles (in deg) and Os-Os distances (in A). The bridging hydride Hg-
and is believed to lie between Os(I) and Os(2) near the intersection of 
lines extended from CO(B) — Os(I) and CO(24) — Os(2). 

Os(2)—63.8 (11)% of the molecules have the geometry 
shown in Figure 1, whereas 36.2 (11)% have the axial CO 
and H ligands on Os(2) reversed. 

While the hydride ligands were not located directly from 
the X-ray structural analysis, their positions may reliably 
be inferred from their effects on the geometry of the re­
mainder of the molecule. (The virtue of this approach has 
already been demonstrated for [H2Re3(CO)i2~]9 and 
H2Ru6(CO)i8,10 among others.) Thus, there are two abnor­
mally large bond angles in the equatorial plane (see Figure 
2), zOs(2)-Os(l)-CO(14) = 113.8 (6)° and /Os( I ) -Os-
(2)-CO(23) = 112.0 (5)°; all other interligand angles lie in 
the range 89.4-99.6° and are more equitably distributed. 
Furthermore, the 0 s ( l ) - 0 s ( 2 ) distance of 2.9886 (9) A is 
significantly longer than the bonds Os(l)-Os(3) and Os(2)-
Os(3) (2.9097 (7) and 2.8574 (7) A, respectively). Each of 
these observations suggests that the bridging hydride ligand 
lies in the equatorial plane, displaced outward from the Os( 1 ) -
Os(2) vector and near the intersection of lines extended 
from C(24) -* Os(2) and C(13) -* Os(I) . The terminal hy­
dride ligand may be assigned to an axial site on Os(2). 

Mutual exchange of the bridging and terminal hydrides 
in H20s3(CO)ioL is evidenced by variable-temperature 1H 
NMR spectra. The two limiting low-temperature hydride 
signals broaden as the sample temperature is raised, disap­
pear completely into the baseline, then reappear at ca. 50° 
as a very broad coalesced resonance centered near the mean 
chemical shift. In this temperature region separate signals 
for coordinated and added free L are observed with 2, 4, 
and 5, which precludes ligand dissociation as the cause of 
the dynamic behavior. Obtaining accurate line shapes at 
higher temperatures is complicated by concurrent decompo­
sition. However, preliminary measurements of line broaden­
ing in the slow-exchange region provide an estimate of the 
barrier to exchange and reveal a slight dependence of the 
barrier upon the nature of L (1, AG+237 = 12.4 kcal mol - 1 ; 
4, AG*2i9 = 10.9 kcal mol - 1)-1 1 The probable intermediate 
(II) in this exchange process has both hydride ligands 
bound just to one osmium center.12 This structure nicely 
conforms to the 18-electron rule for each osmium atom, but 
the fact that it is higher in energy than I indicates the extra 
stability associated with a bridging hydride ligand com­
pared with a terminal one. 
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A New Type of Heteropoly Anion. Tetramolybdo 
Complexes of Dialkyl- and Diarylarsinates1 

Sir: 

We wish to report the synthesis and structure2 of a nov< 
type of heteropoly oxometalate complex that contains co\ 
alently attached organic groups. The structure exhibits 
number of unusual features including a localized, nontitra 
table proton. 
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Figure 1. Structure of [(CHS)2ASMOOI4OH]2-: O, CH3; • . As; octa-
hedra represent M0O6 groups. 

As part of a program to explore and develop the chemis­
try of organic derivatives of heteropoly complexes,3 we have 
synthesized some molybdate complexes of dialkyl and diar-
yl arsinic acids. The complexes have the general formula 
[R 2 AsMo 4 Oi 4 (OH)] 2 - with R = CH3 , C2H5 , and C6H5 . 
Ten salts, with sodium, potassium, guanidinium, tetra-
methyl-, and tetrabutylammonium counterions have been 
crystallized and characterized by elemental analysis and uv, 
ir, and N M R measurements. Salts of the dimethyl deriva­
tive appear to have been prepared earlier by Rosenheim and 
Bilecki4 but were not investigated further. 

The heteropoly complexes are readily prepared from stoi­
chiometric quantities of sodium molybdate and the appro­
priate arsinic acid at pH 4-5. The anions thus formed are 
stable within the pH range 2-6 according to uv spectra 
(maximum at ca. 250 nm). 

The guanidinium salt, (CN3H6)2[(CH3)2As-
Mo4Oi4(OH)J-H2O, crystallizes as large monoclinic blocks 
with the following crystal data (Mo Kai , X 0.70926 A): 
space group P2\/c; Z = 4; a = 8.531 (2), b = 8.527 (2), c 
= 30.129 (5) A; /3 = 95.49 (2)°; pcaicd = 2.65, po b s d = 2.62 
(2) g cm - 3 . X-Ray intensity data were collected by auto­
mated diffractometer and the solution and refinement of 
the structure were carried out by standard methods. The 
final conventional unweighted R based on 2519 observed 
reflections was 0.045. The details of the structure determi­
nation will appear in a later publication. 

The remarkably compact and symmetrical anion consists 
of a ring of four alternately face- and edge-shared MoO6 

octahedra capped by the (CH 3 ) 2 As0 2 tetrahedron as shown 
in Figure 1. The structure represents only the second exam­
ple5 of a heteropoly complex containing face-shared octahe­
dra. The metal-to-oxygen bond distances are similar to 
those found in other heteropoly molybdates and can be clas­
sified into distinct groups according to the type of oxygen 
involved. Metal-oxygen distances for each group range as 
follows: (1) terminal oxygens, 1.689 (8)-1.721 (8) A, (2) 
oxygens bridging two metals, 1.901 (7)-1.940 (7) A, (3) 
oxygens bridging two metals and an arsenic, 2.267 (7)-
2.339 (7) A. The unique basal oxygen is asymmetrically lo­
cated. Three molybdenum-oxygen distances are 2.375 (7), 
2.341 (7), and 2.393 (7) A while the fourth is 2.542 (7) A. 
The unique oxygen lies 0.725 (7) A below the 3.16 X 3.36 
A rectangular plane formed by the metals. 

The stoichiometry of all the salts prepared indicates that 
the anion contains a proton which is not directly revealed by 
the X-ray data. Although potentiometric titrations with so­
dium hydroxide show only a single well-defined end point 
corresponding to the reaction 

R2AsMo4Oi4(OH)2- + 7OH- — R2AsO2" + 4MoO4
2" + 4H2O 

Figure 2. View of the [(CH3)2AsMoOi40H]2_ structure showing 
probable location of the hydrogen atom: O, CH3; • . As; octahedra rep­
resent M0O6 groups. 

the presence of the proton is confirmed by a narrow line at 
1.98 ppm in the N M R spectrum of (Bu4N)2[(CH3)2As-
Mo4O)4(OH)] in dichloromethane and by a sharp infrared 
absorption at 3615 c m - 1 in a Nujol mull of the same salt. 
The integrated intensity of the NMR line is one-sixth that 
of the As(CH3)2 protons, which occurs at 2.19 ppm. The 
chemical shift of the OH proton is some 4 ppm upfield from 
that of the "internal" protons6 in the metatungstate ion, 
H2Wi2O4O6 - and indicates absence of hydrogen bonding in 
the molybdoarsinate case. The 1.98 ppm resonance disap­
pears when methanol is added to the solution, showing that 
the proton is labile. The most probable location of the pro­
ton is the unique basal oxygen of the Mo4Oi5 group as 
shown in Figure 2. This position is consistent with the X-ray 
data for the guanidinium salt which show a tightly bound 
water of hydration 2.8 A from the oxygen in question. The 
asymmetric location of the basal oxygen mentioned above 
presumably accommodates this hydrogen bonding arrange­
ment. That a proton attached to the exterior of a heteropoly 
oxoanion should be effectively nonacidic in aqueous solution 
is highly unusual. Many possibilities exist for the further 
derivativization of such complexes. 
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The Thermal Isomerization of 
5-Acetyl-5-methylbicyclo[2.1.0]pentane. Endo-Exo 
Stereomutation and Cyclopropyl-Ally lie Rearrangement 
of the Endo Ketone on Separate 
Potential Energy Surfaces 

Sir: 

The concurrent thermal endo-exo stereomutation of 5-
acetylbicyclo[2.1.0]pentanes and rearrangement to 3-ace-
tyl-1-cyclopentenes have been described previously by our­
selves1 and by Jorgenson,2 and the cyclopropyl-allylic rear­
rangement, e.g., 1 —» 3, was shown to involve 1,2-migration 

Communications to the Editor 


